Aggregation-Driven Effects of Hybrid Nanoparticles on
Light Response, Heat Generation, and MRI Contrast
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This work explores hybrid gold—magnetite nanoshells as theranostic agents for combined
l photothermal therapy and magnetic resonance imaging (MRI) under the clustering assumption. Finite
element simulations characterize heat generation at the cluster scale, while a collective model
predicts macroscopic temperature rise. An analytical theory calculates transverse relaxation rate (R,)
changes, considering aggregation and temperature effects. Aggregation enhances local heating but
reduces overall temperature increase and R, contrast. Despite this, MRI can still distinguish dispersed
from aggregated systems, highlighting the dual role of aggregation and the potential of hybrid
nanoshells for non-invasive monitoring of laser-induced heating.
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MRI contrast of clusters

" MRI contrast arises from differences in transverse
and longitudinal proton relaxation.

— Transverse proton relaxation characterized by the
transverse relaxation rate (R,)

" Transverse proton relaxation in magnetic particle
cluster modeling [2]

— In this work: adaptation of the model to account for
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The local optimum does not affect the macroscopic temperature rise.

Aggregation leads to a reduced temperature increase.
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Aggregation reduces the impact of temperature rise on R2.
Strong dependence of R2 on the aggregation level

Potential to monitor phototherapy-induced
cancer cell damage via NP aggregation tracking!
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